Indagine H/V

Lunghezza registrazione	15 minuti
Frequenza di campionamneto	200 Hz
Lunghezza finestra	30 s
Overlap	NO
Anti triggering sul segnale naturale	STA = 1 s; LTA = 30 s; min STA/LTA = 0,20; max STA/LTA = 2,50
Filtri	NO
Funzione di lisciamento	Konno & Homachi
Costante di lisciamento	40
Taper	Tukey window, ampiezza 5%

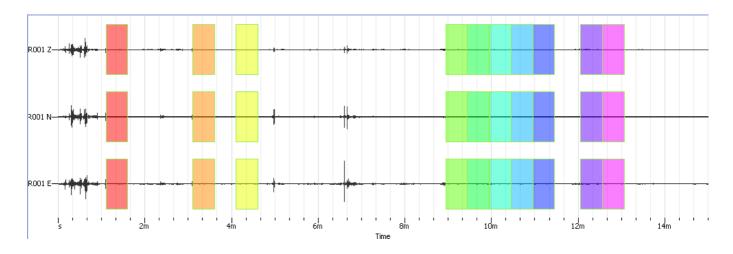


Fig. 1 – Finestre selezionate per processing H/V

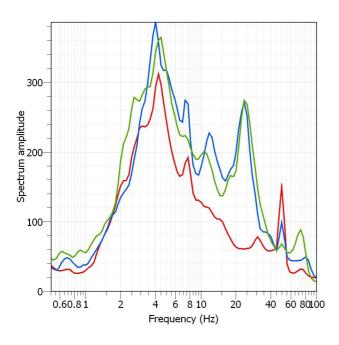


Fig. 2 - Ampiezze spettrali delle tre componenti

Nel grafico di fig. 2 sono riportate le ampiezze spettrali delle tre componenti registrate nel segnale selezionato. In rosso la componente verticale Z, in verde quella orizzontale direzione EO e in blu la componente orizzontale direzione NS.

Il loro andamento descrive un evidente minimo locale della componente verticale a circa 23Hz in corrispondenza di un'amplificazione delle componenti orizzontali, indicativo di una risonanza stratigrafica; a circa 4 Hz e a circa 50 Hz si nota un aumento dell'ampiezze su tutte e tre le componenti causate probabilmente da disturbi antropici.

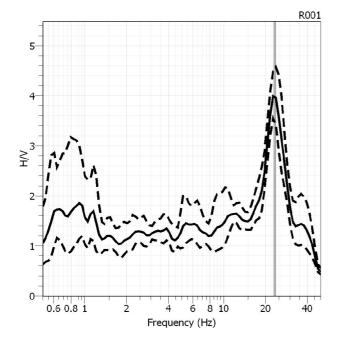
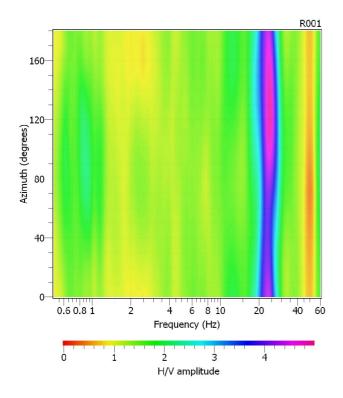



Fig. 3 – Curva H/V e deviazione standard

In figura 3 è riportato l'andamento in frequenza dei rapporti di ampiezza spettrale (H/V) fra la componente orizzontale media (H) e quella verticale (V) delle vibrazioni registrate; le linee tratteggiate rappresentano le curve di confidenza. Di seguito si riporta il valore della frequenza fondamentale, della deviazione standard, e della sua ampiezza:

$$fo = 23,32 \text{ Hz}$$
 $Ao = 3,97$

Per verificare l'isotropia delle sorgenti sono riportati in fig. 4 i rapporti spettrali medi H/V in funzione dell'azimuth, cioè della direzione di provenienza delle componenti orizzontalki del rumore. Si nota una buona stazionarietà in corrispondenza del picco H/V per tutte le direzioni analizzate (intervalli di 10°).

Fig. 4 – Ampiezze dei Rapporti H/V alle varie fequenze secondo la distribuzione delle sorgenti

Di seguito sono riportati i parametri di robustezza statistica del picco H/V, di interesse ingegneristico, secondo quanto proposto dal progetto europeo SESAME (**Site EffectS assessment using AMbient Excitations**, 2004).

Criteri per una curva H/V affidabile (tutti e tre devono essere verificati)			
i) $f_0 > 10 / L_w$	23.32 > 0.50	OK	
ii) $n_c(f_0) > 200$	6996 > 200	OK	
iii) $\sigma_{A}(f) < 2$ for $0.5f_{0} < f < 2f_{0}$ if $f < 0.5Hz$	0 su 30	OK	
or $\sigma_{A}(f) \le 3$ for $0.5f_0 \le f \le 2f_0$ if $f0 \le 0.5H$			
Criteri per un Picco H/V chiaro (almeno 5 su 6 soddisfatti)			
i) $\exists f \in [f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	7,78 Hz	OK	
ii) $\exists f^+ \in [f_0, 4f_0] A_{H/V}(f^+) < A_0/2$	45,56 Hz	OK	
iii) $A_0 > 2$	3,97 > 2	OK	
iv) $f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$			
$v) \sigma_f < \varepsilon(f_0)$	0,56 < 1,17	OK	
vi) $\sigma_{A}(f_{0}) < \theta(f_{0})$	0,49 < 1,58	OK	

$L_{\rm w}$ =lunghezza della finestra = 30s	
n _w = numero di finestre usate nell'analisi =10	
$n_c = l_w \cdot n_w \cdot f_0 = numero di cicli significativi$	
f = frequenza attuale	
$f_0 = \text{frequenza del picco H/V}$	
σ(f) = deviazione standard della frequenza del picco H/V calcolata su tutte le finestre	
$\varepsilon(f_0)$ = valore di soglia per la condizione di stabilità $\sigma(f) < \varepsilon(f_0)$	
Ao = ampiezza media della curva H/V alla frequenza fo	
A _{H/V} (f) ampiezza media della curva H/V alla frequenza f	
f^- = frequenza tra fo/4 e fo alla quale $A_{H/V}(f -) < A_0 / 2$	
f^+ = frequenza tra fo e fo4 alla quale $A_{H/V}(f^+) < A_0/2$	
$\sigma_{A}(f)$ = deviazione standard di $A_{H/V}(f)$, $\sigma_{A}(f)$ è il fattore per il quale la curva AH/V(f) media	
deve essere moltiplicata o divisa	
$\sigma_{\log H/V}(f)$ = deviazione standard della funzione log $A_{H/V}(f)$	
θ (f ₀) = valore di soglia per la condizione di stabilità $\sigma_A(f_0) < \theta$ (f ₀)	

Il picco fo della curva H/V individuato a 23,32 Hz soddisfa i criteri richiesti di affidabiltà e chiarezza. Esso rappresenta molto probabilmente la frequenza di risonanza fondamentale del sito ed è collegato ad un forte contrasto di impedenza superficiale.